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Strange attractor simulated on a quantum computer
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Laboratoire de Physique Quantiqueb, Université Paul Sabatier, 31062 Toulouse Cedex 4, France

Received 10 August 2002
Published online 29 October 2002 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. We show that dissipative classical dynamics converging to a strange attractor can be simulated
on a quantum computer. Such quantum computations allow to investigate efficiently the small scale struc-
ture of strange attractors, yielding new information inaccessible to classical computers. This opens new
possibilities for quantum simulations of various dissipative processes in nature.

PACS. 05.45.Df Fractals – 05.45.Ac Low-dimensional chaos – 03.67.Lx Quantum computation

Starting from the work of Lorenz [1], it has been realized
that the dynamics of many various dissipative systems
converges to so-called strange attractors [2]. These objects
are characterized by fractal dimensions and chaotic un-
stable dynamics of individual trajectories (see e.g. [3,4]).
They appear in nature in very different contexts, includ-
ing applications to turbulence and weather forecast [1,2],
molecular dynamics [5], synchronization [6], chaotic chem-
ical reactions [7], multimode solid state lasers [8] and com-
plex dynamics in ecological systems [9,10] and physiology
[11]. The efficient numerical simulation of such dissipative
systems can therefore lead to many important practical
applications.

Recently, it has been understood that quantum
mechanics allows to perform computations in a funda-
mentally new way (see for review e.g. [12–16]). Indeed,
quantum parallelism can enormously accelerate the com-
putation and provide new information inaccessible to clas-
sical computers. Well-known examples are Shor’s factor-
ization algorithm [17], which is exponentially faster than
any known classical method, and Grover’s search algo-
rithm [18], where the gain is polynomial. Even if impor-
tant progress has been achieved during the last years, still
it is essential to find new areas where quantum processors
might give access to new information unreachable classi-
cally. Especially interesting are applications to dissipative
systems with irreversible dynamics leading to a loss of in-
formation.

In this paper we analyze how classical dissipative dy-
namics can be simulated on such quantum processors. To
this aim, we study a simple deterministic model where
dynamics converges to a strange attractor, and show
that it can be efficiently simulated on a quantum com-
puter. Even if the dynamics on the attractor is unsta-
ble, dissipative and irreversible, a realistic quantum com-
puter [12–15,19,20] can simulate it in a reversible way,
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and, already with 70 qubits, will provide access to new
informations inaccessible for modern supercomputers.

To study how a quantum computer can simulate dissi-
pative dynamics leading to a strange attractor, we choose
the deterministic map given by:

ȳ = y/2 + x (mod 2), x̄ = x + ȳ (mod 1). (1)

where −0.5 ≤ x < 0.5, −1 ≤ y < 1 and bars note the new
values of variables. The map has one positive λ+ and one
negative λ− Lyapunov exponents (λ± = ln[(5 ±√

17)/4])
so that the dynamics converges to a strange attractor with
Hausdorff (DH) and information (DI) dimensions [21–23]
DH ≈ DI = 1 + λ+/|λ−| ≈ 1.543.

To implement this map for a computer simulation it
is necessary to discretize the phase space. We choose the
natural discretization in the binary representation of co-
ordinates (x, y), so that the dynamics takes place on a
regular square lattice with N × 2N points, with N = 2nq

and nq integer. The division in (1) is realized by shift and
truncation of the last binary digit. With this procedure,
the dissipation generates a discretized irreversible map,
displaying a discretized strange attractor (see Fig. 1 top)
which approaches the continuous one for large N . Such a
map can be implemented efficiently on a quantum com-
puter. For that, an initial image with Nd points is coded
in the wave function |Ψ0〉 =

∑
i,j aij |xi〉|yj〉|0〉|0〉, where

ai,j = 0 or 1/
√

Nd. Here the two registers |xi〉 and |yj〉
with nq and nq + 1 qubits hold the values of the coor-
dinates x and y (xi = −0.5 + i/N, i = 0, ..., N − 1 and
yj = −1 + j/N, j = 0, ..., 2N − 1). The third register with
nq − 1 qubits is used as workspace for modular additions,
and the last one collects the truncated last digits gener-
ated by the divisions (“garbage”). We start with the sim-
plified algorithm for which the garbage gets one digit at
each map iteration so that t iterations need t qubits in
the fourth register. The size of this register can be sig-
nificantly reduced using a more refined algorithm we will
describe later.
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The algorithm starts with the initial state |Ψ0〉; first it
places the last qubit of |y〉 in the garbage register, and uses
nq swap gates to shift the |y〉 qubits and obtain y/2. Then
a modular addition is implemented in the way described
in [24] to add x to y/2. After that, another modular addi-
tion adds the second register to the first. In total, this re-
quires 17nq−10 quantum operations using Toffoli, control-
not and swap gates in contrast to O(22nq ) operations for
the classical algorithm. It is interesting to note that the
algorithm allows to restore the initial state: inverse map
iterations are performed (x = x̄ − ȳ, y/2 = ȳ − x) and y
is restored from y/2 using a qubit stored in the garbage
register. This requires a similar number of operations as
the forward iterations. In principle this can be done on a
classical computer in O(22nq ) operations, but this requires
additional exponentially large memory which stores about
22nq t bits for Nd ∼ N2, contrary to only t qubits used by
the quantum computer.

Figure 1 shows the dynamics generated by the dis-
cretized map (1) simulated on a quantum computer with
exact and noisy unitary gates with imprecisions of am-
plitude ε. Due to the dissipative nature of the map (1),
the initial image rapidly converges towards the strange
attractor (already t = 5 is enough). Even in the pres-
ence of relatively strong noise, the fractal structure of the
attractor is well-preserved and the initial image can be
reliably recovered after backwards iterations, despite the
exponential instability of the classical dynamics (1). The
precision of computation can be quantitatively character-
ized through the fidelity f defined at a given moment of
time as the projection of the quantum state in presence
of gate imperfections on the exact state without imper-
fections. The global properties of the initial image can be
recovered even at relatively low fidelity values.

Even if the quantum algorithm performs one map
iteration only in O(nq) operations, it is important to
take into account the measurement procedure that al-
lows to extract efficiently the information coded in the
wave function. Indeed the number of points in Figure 1
grows exponentially with nq and an exponential num-
ber of measurements is required to obtain the full den-
sity distribution. However, certain characteristics can be
extracted in a polynomial number of measurements, pro-
viding new information inaccessible for classical compu-
tation. An example of such a quantity is the spectrum of
phase space correlation functions, defined as C(t, kx,y) =∑

x0,y0
exp(2iπ(x(t, x0, y0) + y(t, x0, y0))) exp(2iπ(kxx0 +

kyy0)), where the sum runs over the points (x0, y0) of
the initial distribution, and (x(t, x0, y0), y(t, x0, y0)) is the
position of (x0, y0) at time t. Such correlation functions
have been studied for chaotic systems, where they deter-
mine various kinetic coefficients, for example the diffu-
sion rate (see e.g. [4] p. 328). Due to chaos, the function
C(t, kx,y) has significant values at exponentially high har-
monics kx,y ∼ exp(|λ−|t) which rapidly reaches harmonics
of order N . In the theory of classical chaotic dynamics it
is well-known that the information about such harmon-
ics is very hard to access, since exponentially small scales
should be explored, which can be done only with exponen-

tially many trajectories [4,25]. On the contrary, the quan-
tum computation of C(t, kx,y) can be done efficiently. For
that, one makes t iterations of (1), and creates the state∑

ax,y exp(2iπ(x + y))|x〉|y〉|0〉|g(t)〉. The preparation of
this state is easily done by applying 2nq + 1 one-qubit ro-
tations to the first two registers. Then the garbage g(t) is
erased by iterating the map backwards t times, that at the
same time returns the coefficients ax,y to their original val-
ues. This creates the state

∑
ax0,y0 exp(2iπ(x(t, x0, y0) +

y(t, x0, y0)))|x0〉|y0〉|0〉|0〉, keeping phases unchanged. The
whole procedure is sometimes called “phase kickback”.
After that the application of a two-dimensional quantum
Fourier transform [13] yields in O(n2

q) operations the state∑
C(t, kx,y)|kx〉|ky〉|0〉|0〉. A polynomial number of mea-

surements yields the principal peaks, or enables to obtain
a coarse-grained image of the spectral density |C(t, kx,y)|2
in the Fourier space. Indeed, independently of nq, one can
measure the first nf and nf + 1 qubits of the x and y
registers respectively, that gives integrated probability in-
side 22nf+1 cells. Figure 2 displays the spectral density
for the case of Figure 1. It shows that new information
about the coarse-grained spectral density can be obtained
efficiently. Indeed, patterns are clearly present in Figure 2
and they vary irregularly with nq (compare Fig. 2 mid-
dle left and bottom left). This confirms the nontrivial na-
ture of information provided by the coarse-grained density
|C(t, kx,y)|2. Although the spectral density is more sensi-
tive to noise than the distribution in Figure 1 still the
patterns remain well-defined even in the presence of rela-
tively strong errors (see Fig. 2).

It is important to stress that even modern supercom-
puters are unable to find the properties of the spectral
density for nq ≥ 20. Indeed, as is shown in Figure 3, a
classical Monte Carlo algorithm requires an exponentially
large number of trajectories M (M = O(22nq )) to obtain
the coarse-grained spectral density at fixed nf with fixed
accuracy. In contrast, the quantum computation requires a
number of measurements M independent of nq (each mea-
surement is done after t map iterations and one Fourier
transform which needs O(n2

q) quantum gates).

To study the effect of noisy gates in a more quantita-
tive way, we show in Figure 4 the dependence of the fidelity
f(t) of the quantum computation of spectral amplitudes
C(t, kx,y) on the noise amplitude ε and total number of
gates ng applied (ng = t(44nq − 14) + (nq + 2)2 − 2). The
data show the global scaling law 1− f(t) ≈ ε2ng/14, valid
for moderate ε. The physical origin of this scaling law is
related to the fact that for randomly fluctuating unitary
gates the loss of probability from the exact state is of the
order of ε2 for each gate operation. This law determines a
time scale tf ≈ 1/(6ε2nq) up to which a reliable quantum
computation is possible (f ≥ 0.5). Beyond tf the deco-
herence destroys the accuracy of the quantum computa-
tion and the results become strongly distorted, see e.g.
Figure 2 bottom right. We note that a similar time scale
appears in quantum computation of Shor’s algorithm on
a realistic quantum computer [26]. The computation be-
yond the scale tf is possible but requires the application of
quantum error-correcting codes, at the cost of additional
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Fig. 1. Top: exact classical/quantum computation of the dis-
cretized map (1); initial image (left) converged to the strange
attractor after t = 10 iterations (right). Middle: quantum com-
putation with noise amplitude ε = 0.05 in each gate operation;
attractor at t = 10 (right) and initial image recovered after
10 backwards iterations with fidelity f = 0.63 (left). Bottom:
same as middle with ε = 0.1 and f = 0.15. Left shows the cen-
tral cell (−0.5 ≤ x, y < 0.5), right shows the whole phase space.
Color marks the probability density (integrated over third and
fourth registers), from blue (density less than 10−5) to red
(maximal value). Here nq = 6, with in total 28 qubits used.

qubits and gates (see e.g. [14,15] and references therein).
Without error correction, it is still possible to improve the
fidelity of the final state by measuring the third and fourth
registers. Indeed for exact computation they are at zero
after the backwards iterations while with noisy gates the
error probability grows as Wg ≈ 3.5ε2t (Fig. 4 inset). The
measurements of these registers allow to select the correct
states and increase the fidelity by a factor 1/(1 − Wg),

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Spectral density |C(t, kx,y)|2 for the strange attrac-
tor of Figure 1 at t = 10 in the region −N/2 ≤ kx ≤ N/2,
−N ≤ ky ≤ N (N = 2nq ). Top: three-dimensional plot of
the full distribution for nq = 6 and ε = 0 (left), ε = 0.025
(right). Middle: color plot of the coarse-grained distribution
with nq = 6, nf = 4 and ε = 0 (left), ε = 0.025 (right). Bot-
tom: same as middle for nq = 10, ε = 0 (left), and nq = 6,
ε = 0.05 (right). Colors are as in Figure 1.

e.g. for the case of Figure 1 (bottom) this procedure gives
f = 0.22.

The above algorithm is optimal for not very large
times t. If one is interested in simulating the dynamics on
the attractor for large t, then the size of the garbage reg-
ister can be significantly reduced. Indeed, at any t, copy-
ing the results x(t), y(t) in two additional registers and
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Fig. 3. Complexity of classical and quantum computations of
coarse-grained distribution of Figure 2 with 10% accuracy (i.e.
fidelity f(t) = 0.9). Here nf = 4, t = 10 and different values of
nq are shown. For classical computation (open circles), M gives
the number of classical Monte Carlo trajectories required to
reach 10% accuracy. For quantum case (full circles), M is the
number of measurements needed to obtain the same accuracy.
Full line shows the total number of classical points in the initial
image shown in Figure 1 (M ≈ 0.36 × 22nq ). Logarithm is
decimal.

Fig. 4. Fidelity f for the spectral amplitudes of Figure 2 as a
function of ε2ng for 4 ≤ nq ≤ 6, 10−4 ≤ ε ≤ 0.5 and 6 ≤ t ≤ 10.
Inset: error probability Wg in the third and fourth registers as
a function of ε2t for nq = 6. Straight lines show the theoretical
slope 1, logarithms are decimal.

reversing the sequence of gates allows to erase the garbage
and reproduce x0, y0. This procedure can be done recur-
sively following the strategy of “reversible pebble game”,
the description of which can be found in [15]. In the sim-
plest version, nt qubits in the garbage register (plus the
two additional registers for x0, y0) allow to perform map
iterations up to t ∼ 2nt . This gives only a polynomial in-
crease in the number of elementary quantum operations,
being proportional to n1.58

g . The procedure becomes cost-
effective for t � nq.

The algorithm described above can be generalized to
other dissipative maps. For example, modular multiplica-

tions can be performed in O(n2
q) operations, as described

in [24]. This allows to simulate efficiently the map (1) with
x2 term in first equation and also the Hénon attractor
x̄ = y + 1 − ax2, ȳ = bx [4]. Such an algorithm can also
be adapted to perform the finite-step integration of the
Lorenz system ẋ = −σ(x − y), ẏ = −xz + rx − y, ż =
xy − bz [1]. However the simulation of the dissipative dy-
namics of these models requires more qubits than for (1).

Thus on the example of the map (1), we have shown
that a quantum computer can efficiently simulate dissi-
pative irreversible dynamics. A quantum processor with
70 qubits will be able to provide new information about
small-scale structures of strange attractors inaccessible to
modern supercomputers.
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